

PropConfig – A Tool for Atmospheric Propagation Configuration

February 24, 2010

Amy M. Ngwele Marcus Gualtieri

MZA Associates Corporation

2021 Girard Blvd. SE, Suite 150 Albuquerque, NM 87106 505-245-9970 1360 Technology Court, Suite 200 Dayton, OH 45430 937-684-4100 140 Intracoastal Pointe Dr. Suite 310 Jupiter, FL 33477 505-245-9970

- PropConfig is a utility in ATMTools that facilitates setup of geometry and atmosphere and gives guidance regarding settings for mesh parameters for wave optics simulation
 - It's new in ATMTools (since release 2009.1) but is based on the TurbTool utility that has previously been part of WaveTrain
- PropConfig can take in predefined atmosphere and geometry data (in multiple formats) or can be populated with default parameters and settings
- Data from PropConfig can be saved to a Matlab data file which can then be loaded into a runset for WaveTrain
- PropConfig contains much of the functionality of ATMTools and EngagementTools including many features which are not part of the older graphical utilities of these toolboxes.
- This tutorial will go through the utility and highlight features while setting up an example scenario.

Example Scenario Parameters

- Consider a stationary, ground-based platform with a laser source attempting to illuminate a fast-moving airborne target at 10 km altitude
 - O Source
 - Altitude 10 m
 - Velocity Stationary
 - Transmit Diameter 50 cm
 - Wavelength 1.03 μm
 - **O** Target
 - Altitude 10 km
 - Velocity 200 m/s, heading East (90 deg from North)
 - Range 30 km slant range

• Atmosphere

- O H-V 5/7 turbulence profile
- **O** MODFAS for absorption and scattering profiles
 - MODFAS implements lookup tables generated using a combination of data from MODTRAN and FASCODE runs
- O Constant wind profile 5 m/s
- **O** Constant wind heading East
- **O** US Standard 1976 temperature profile
- **O** Experiment with screen number, placement and distribution

PropConfig

- **PropConfig main window**
- Plots of geometry (left plot) and turbulence profile (right plot)
 - Right+click context menu on both x- and y-labels on profile plot allow user to change plot contents
- Tables at bottom show computed propagation parameters (r₀, θ₀, etc) and atmospheric transmission
- In the middle are 6 tabs with different input settings which will be described separately

General Parameters

A PropConfig				
File Tools Help				
Engagement Geom	stry T	×1 10 ورس 20 5	0 ⁻¹⁷ Turbule	nce Profile
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 eters) «tmosphere][Screens	Slant Coo Mesh	rdinate (km)
Wavelen Diameter of Aperture or Region a	gth (microns) t Platform (m)	1.064 1.0	1.064 💌	
Diameter of Aperture or Region	at Target (m)	1.0		
Parameters Affec	ting Atmosphe	ric Modeling —	<u>.</u>	
Begin t	urbat SR (m)	0		
Endt	urbat SR (m)	12047 5519		
Maximu	nattitude (m)	50000		
Groun Top of bound	d A <mark>Maximum</mark> ary layer (m)	altitude for d 5000	istribution of tu	rbulence phase screens
$PVVr_{0}(m)Sphr_{0}(m)\Theta_{0}(\mu r_{0})$	ad) PW Rytov	Sph Rytov f _G (I	Hz) f _T (Hz)	T _{scal} T _{abs} T _{iel}
Platform 0.3587 0.4732 26.379	0.0136	0.0073 0.000		0.8975 0.9862 0.8852
Target [0.3307 [1.0113 [12.343	2 0.0316	0.0073 [[0.000		

- The image to the left shows the general tab with default settings
 - **O** Wavelength
 - **O** Diameters at each end of the path
 - **O** Parameters affecting atmosphere
 - Start and end range for atmospheric models
 - Maximum altitude for placing phase screens
 - Ground and boundary layer altitudes for computing screen altitude
- Many of the text fields have tooltips for more detailed information about the parameter inputs

Example General Params

Diameters: Source = 50 cm Consider diameter at target plane of 10 cm

Wavelength either select from pop-up menu or type in a value

Values in menu are those for which abs/scat data exists for MODFAS profile. Can enter other wavelengths with the option of running MODTRAN and FASCODE to get new data.

Geometry Setup

e Tools Help	Engagement Geo 2 4 round Range (kild Geometry Platform Altitude	6 8 meters) Atmosphere	* දි ළ ැ V-		Turbulen	ce Profile	
TSWeAvore 4 Ex 2 Ex 2 Concernal Conc	Engagement Geo 2 4 round Range (kild Geometry Platform Altitude	6 8 ometers) Atmosphere	* ర్లో ల్ర రా		Turbulen Slant Coordina	ce Profile	
E 2	2 4 round Range (kild Geometry Platform Altitude	6 8 ometers) Atmosphere	Scree	0	Slant Coordina	-0-0-(te (kilomete	-0-0- 10 ers)
General Simple LLA ECF XY Platform Target Ea	Platform Altitude	Atmosphere	Scree	ens			
Simple LLA ECF XY Platform Target Ea	Platform Altitude				Mesh	Simulation	
ECF XY Platform Target Ea	Target Altitude	1000 8650		Pla Plat:	atform Speed	0 90	
O XY Platform Target Ea	Ground Range	9300	V	Platform	Velocity (T P)	0	2.2204e-01
Platform	Slant Range (m	12047.5519		-	Target Speed	0	
Target	Platform Angle	39.377	= -	Та	arget Heading	90	
Ea	Target Angle	-39.4606		Target	Velocity [T P]	0	2.2204e-01
	arth Model		Equat	orial Radiu:	s (m) 637	1008.7714	
PVV r _o (r	m)∣Sphr _a (m)∣0 _a (prad) PVV Rytov	Sph Ryto	f _G (Hz)	f _T (Hz)	τ _{scal}	T _{ats} T _{je1}
Platform 0.3450	0 4554 05 4		JU.0076	0.000	0.0000	0.89160	.9857 0.8789
ranger [[0.0430	0.4551 25.3	3714 0.0142	0.0076	0.000	0.0000		

- Geometry tab gives the user four different options for setting/changing geometry
 - Simple combination of altitude, range, and elevation angles, speed and heading
 - LLA Latitude, Longitude, Altitude specification
 - O ECF Earth Centered Fixed specification
 - XY Specify velocity decomposition in the plane perpendicular to the propagation
- Can select platform/target location from a database of common sites using push buttons on the left
- Can also change earth model and radius
 - **O** Geometric/spherical
 - **O** Geodetic/oblate

Example Geometry

Use the Simple geometry specification

- Assumes no vertical speed (can be specified using LLA or XY)

- Places Target at lat/long [0 0] and Platform South of that

Uncheck Ground Range box and check Slant Range box to specify slant range

PropConfig	9 elp			-	L	
M	ZĄ		15	× 10 Turbuler	nce Profile	
ALT, km aboveMSL	Engagement Geo	20 25	ور الله ک ع		0 0 0 20	
General	Ground Range (kilor	Atmosphere	Screens	Slant Coordina Mesh	ate (kilomete Simulation	rs)
Simple LLA ECF XY	Platform Altitude Target Altitude Ground Range	10 10000 28265.6315 30000	▼ ▼ ■ P	Platform Speed Platform Heading latform Velocity [T P] Target Speed	0 90 0 200	2.2204e-01
Platform) Target	Platform Angle Target Angle	19.3238 -19.578		Target Heading Target Velocity [T P]	90 0	200
	Earth Model		Equatoria	al Radius (m) 637	71008.7714	
PW	r _o (m)Sphr _o (m)θ _o (μ	≇ad) PW Rytov	Sph Rytov	f _G (Hz) f _T (Hz)	τ _{scal}	τ _{ate} τ _{ie1}

Set altitudes speeds and headings

Computes velocity decomposition based on target velocity vector

Atmosphere Setup

PropConfig						
e <u>T</u> ools Help						
M	2		× 10 ⁻¹⁵	Turbulence Pro	file	
TI, Km abovering Lange	Engagement Geom	etry T		<u>- 0 0 0 1</u>	-	
0 5	10 15 3	20 25	0 Sler	10 t Coordinate (kilo	20 30	
General	Ceometry	tmosphere	Sidi		ation	
	Geometry					
Model Name	HV57	Model Name	US Standard76	Model Name	MODFAS	
Parameters		Parameters	Т	Parameters	'A'.'1030'	
Model List	HV57 -	Model List	US Standar	Model List	MODFAS .	
Model Options	None 💌	Model Options	None 🔻	Model Options	None -	
Wind Wind	Access of the second se	WindHeadin	9	Scattering		
Model Name	UniformAtm	Model Name	UniformAtm	Model Name	MODFAS	
Parameters	0	Parameters	90	Parameters	'S','1030'	
Model List	UniformAtm	SYNTAX:	is in the second se	Model List	MODFAS -	
Model Options	None	Model = Uniform	mAtm(h,ModelVa	lue) del Options	None -	
Speed/Heat	ading 🔘 Speed	X/Y (T				
line i				<u></u>		
PVV r_ (rr	ijSprir_(m) \u03c6_(µre	a) PVV Rytov Sph	Rytov T _G (HZ) T		at Tats Tuei	
1-14 0.4.400	- III 1 EUX - IE 2017	0.00	bUZ 165.4418 32	.1546	29 0 9517 0 6594	
Platform 0.1403	0.5147 1.7749	0.3453 0.0	602 165 4419 43	0474	2010:0011 [[0:0004	

- The Atmosphere tab is where the user specifies for each available model (C_n², Wind, Temperature, etc) the profile that is to be used
- Can include or exclude any of the available models
- The profiles can be any Matlab function (on the Matlab path) with altitude as the first input, including user-defined functions.
 - O Model List pop-up menu contains all model functions available in ATMTools
 - Model Options pop-up menu contains options for modifying the output of the base profile
- Tooltips on Model Name box and Parameters box displays help on function syntax
 - Right+click on Model Name or Parameters fields to get more help
- Option with natural wind to specify speed and heading (like Simple geometry) or specify velocity XY decomposition (like XY geometry)

Model Options

PropConfig							
e <u>T</u> ools Help							
M	7	E		15 -	-15 : 10	Turbulence Pro	file
TI Wayoode and the second seco	Engagemen	t Geome	try T	10 . المرجع (الله جوم) 10 - 10 . 10	00	<u>0 0 0 0 1</u>	
0 5 Gr	10 1 ound Range	15 20 (kilomet) 25 ers)	0	Sla	10 : nt Coordinate (kilo	20 30 ometers)
General	Geometry	Ati	mosphere	Screens)[M	esh Simul	ation
Cn2 Model Name HV57		7	Temperature Model Name Parameters	e US_Star	ndard76	Absorption Model Name Parameters	MODFAS
i ai ainotoro		V57 V57 Model L			-		
Model List	HV57	-	Model List	US Stand	dar 🔻	Model List	MODFAS .
Model List Model Options	HV57 None	-	Model List Model Options	US_Stand None	dar ▼ ▼	Model List Model Options	MODFAS None
Model List Model Options	HV57 None None	•	Model List Model Options	US_Stand None	dar 💌	Model List Model Options	MODFAS None
Model List Model Options Wind Model Name	HV57 None None AverageA	tm	Model List Model Options	US_Stand None	dar ▼ ▼ ⊮Atm	Model List Model Options Scattering Model Name	MODFAS None MODFAS
Model List Model Options Wind Model Name Parameters	HV57 None None AverageA Boundary/	tm Atm	Model List Model Options	US_Stand None	dar ▼ ▼	Model List Model Options Scattering Model Name Parameters	MODFAS None MODFAS 'S','1030'
Model List Model Options Wind Model Name Parameters Model List	HV57 None None AverageA Boundary/ TerrainAtn	tm Atm	Model List Model Options	US_Stand None	dar ▼ ▼ IAtm m ▼	Model List Model Options Scattering Model Name Parameters Model List	MODFAS None MODFAS 'S','1030' MODFAS
Model List Model Options Wind Model Name Parameters Model List Model Options	HV57 None None AverageA Boundary/ TerrainAtn AverageA	tm Atm n tm(Boun	Model List Model Options daryAtm)	US_Stand None	dar 💌	Model List Model Options Scattering Model Name Parameters Model List Model Options	MODFAS None MODFAS 'S','1030' MODFAS None
Model List Model Options Wind Model Name Parameters Model List Model Options	HV57 None None AverageA Boundary/ TerrainAtn AverageA AverageA TerrainAtn	tm Atm n tm(Boun tm(Terra	Model List Model Options daryAtm) iinAtm) aryAtm)	US_Stand None	dar ▼ Atm	Model List Model Options Scattering Model Name Parameters Model List Model Options	MODFAS None MODFAS 'S','1030' MODFAS None
Model List Model Options Wind Model Name Parameters Model List Model Options Speed/Hee	HV57 None AverageA Boundary/ TerrainAtn AverageA AverageA TerrainAtn AverageA	tm Atm n tm(Boun tm(Terra n(Boundattm(Terra	Model List Model Options daryAtm) iinAtm) aryAtm) iinAtm(Boundary	US_Stand None Atm))	dar ▼ ↓ Atm n ▼ ↓	Model List Model Options Scattering Model Name Parameters Model List Model Options	MODFAS None MODFAS 'S','1030' MODFAS None
Model List Model Options Wind Model Name Parameters Model List Model Options Speed/Hee PWYrn (m	HV57 None AverageA Boundary/ TerrainAtn AverageA AverageA TerrainAtn AverageA	tm Atm n tm(Bound tm(Terra n(Bound tm(Terra	Model List Model Options daryAtm) inAtm) inAtm) inAtm(Boundary ایریکیریوی	US_Stand None Atm))	Atm	Model List Model Options ✓ Scattering Model Name Parameters Model List Model Options	MODFAS None MODFAS 'S','1030' MODFAS None None
Model List Model Options Wind Model Name Parameters Model List Model Options Speed/Hee PWY r _n (rr Platform 0.1403	HV57 None AverageA Boundary/ TerrainAtn AverageA AverageA TerrainAtn AverageA 0.1694	tm Atm n tm(Bound tm(Terra n(Bound tm(Terra 5.3913	Model List Model Options daryAtm) inAtm) aryAtm) inAtm(Boundary 0.0001_0.0 0.2400_000	Atm))	dar •	Model List Model Options ✓ Scattering Model Name Parameters Model List Model Options f_(Hz) 2.1546 0.65	MODFAS None MODFAS 'S','1030' MODFAS None None Tate T _{ate} T _{tet}

- Various model options for modifying the output of the base profile
 - AverageAtm compute average value of model (Cn2) for each phase screen segment as opposed to using the value at the screen altitude
 - BoundaryAtm scale screen altitudes in some interval (say ground to top of boundary layer) to some other interval (0 to top of boundary layer)
 - O TerrainAtm subtract ground altitude from all altitudes
 - **O** And combinations of these

Example Atmosphere

Using all the default settings with the exception of wind speed

Phase Screen Setup

- Screens tab allows the user to change the number of phase screens, how they are distributed and where they are located
 - **O** Use standard settings or
 - Customize via the plot or the table that is displayed by clicking the "Edit Screen Info" button
 - Table described in later slides
- Can also specify method for computing atmospheric parameters, either continuous integration of the profile or discrete based on the screen settings
 - O By default, PropConfig loads with discrete integration

- Will examine the affects of various settings for phase screen number, distribution, and location
- For wave optics simulation, would like the fewest number of screens possible such that using discrete integration approximates the atmospheric parameters when continuous integration is used
 - **O** Wave-optics simulations are not continuous, need to specify screens
 - **O** Fewer screens = faster sims
- For the example (from previous slide) using continuous integration would like r0 to be within 2%
 - **O** Spherical r0 for Platform between 6.72 and 7 cm
 - Spherical r0 for Target between 0.5025 and 0.5231 m

Number of Screens

Experiment with different numbers of screens and placement with Equal Thickness screens

Need about 100 equally-spaced screens at mid-point of segments to get both spherical r0 values close (within 2%) to the continuous case

# of Screens	Platform r_0 (cm)	Target r_0 (cm)
10	16.94	51.47
20	10.29	51.12
50	7.43	51.24
100	7.00	51.27
200	6.89	51.28

Screen Distribution

Change screen distribution to Equal Strength and experiment with screen number and placement

Need at least 50 screens located at mid-points to get close to r0 values for the continuous case

Using Model Options

Try the model averaging option for Cn2

Go back to Atmosphere tab and select AverageAtm for Cn2 model

Number of Screens with AverageAtm Option

- Change number of screens with AverageAtm option selected for Cn2 and equal thickness distribution
- Increasing beyond 50 screens doesn't change r0's much. Using 25 screens could be sufficient

# of Screens	Platform r_0 (cm)	Target r_0 (cm)
10	7.10	47.11
20	6.95	50.16
50	6.87	51.14
100	6.86	51.25

Custom Screen Settings

	Seg. Start (km) Se	g. End (km)	Z (km)	dZ (km)	h (km)	Cn2	Avg(Cn2)	Int(Cn2)	r0	Wind	WindHe
1	0	3.0000	1.5000	3.0000	0.5065	1.7456e-15	1.7456e-15	5.2367e-12	0.0708	!	5
2	3.0000	6.0000	4.5000	3.0000	1.5005	1.0120e-16	1.0120e-16	3.0359e-13	0.3910	!	5
3	6.0000	9.0000	7.5000	3.0000	2.4957	5.2121e-17	5.2121e-17	1.5636e-13	0.5822	ł	5
4	9.0000	12.0000	10.5000	3.0000	3.4922	2.7132e-17	2.7132e-17	8.1397e-14	0.8614	!	5
5	12.0000	15.0000	13.5000	3.0000	4.4900	1.5182e-17	1.5182e-17	4.5546e-14	1.2204	1	5
6	15.0000	18.0000	16.5000	3.0000	5.4890	1.0820e-17	1.0820e-17	3.2461e-14	1.4954	!	5
7	18.0000	21.0000	19.5000	3.0000	Ad	ld Screen	1.0883e-17	3.2649e-14	1.4902	ł	5
B	21.0000	24.0000	22.5000	3.0000	Au		1.2992e-17	3.8975e-14	1.3400	!	5
9	24.0000	27.0000	25.5000	3.0000	ке	move Screen	1.5269e-17	4.5807e-14	1.2162	1	5
.0	27.0000	30.0000	28.5000	3.0000	9.4975	1.6518e-17	1.6518e-17	4.9555e-14	1.1601	!	5
	•		m	1							

- Clicking the "Edit Screen Info" button on the Screens tab will bring up a table for viewing data in a tabular form and for customizing screen settings
 - O In main GUI set number of screens to 10 before clicking "Edit Screen Info"
- Right+click to add or remove screens
- Can manually edit segment boundaries, screen locations, and other model data (Cn2, screen r0, Wind, Abs, etc)
- Can adjust screen placement and distribution to standard options
- After making any changes, must click "OK" or "Apply" to see how changes affect atmospheric parameters in the main window
- Use "Reset" or "Cancel" to discard changes

Example Custom Screens

	Seg. Start (km) Seg	. End (km)	Z (km)	dZ (km)	h (km)	Cn2	Avg(Cn2)	Int(Cn2)	rO	Wind	WindHe
1	0	2.9000	0.5000	2.9000	0.1755	1.8009e-15	1.8009e-15	5.2225e-12	0.0709		5
2	2.9000	6.0000	4.5000	3.1000	1.5005	1.0247e-16	1.0247e-16	3.1766e-13	0.3805		5
3	6.0000	9.0000	7.5000	3.0000	2.4957	5.2121e-17	5.2121e-17	1.5636e-13	0.5822		5
4	9.0000	12.0000	10.5000	3.0000	3.4922	2.7132e-17	2.7132e-17	8.1397e-14	0.8614		5
5	12.0000	15.0000	13.5000	3.0000	4.4900	1.5182e-17	1.5182e-17	4.5546e-14	1.2204		5
6	15.0000	18.0000	16.5000	3.0000	5.4890	1.0820e-17	1.0820e-17	3.2461e-14	1.4954		5
7	18.0000	21.0000	19.5000	3.0000	6.4892	1.0883e-17	1.0883e-17	3.2649e-14	1.4902		5
8	21.0000	24.0000	22.5000	3.0000	7.4907	1.2992e-17	1.2992e-17	3.8975e-14	1.3400		5
9	24.0000	27.0000	25.5000	3.0000	8.4935	1.5269e-17	1.5269e-17	4.5807e-14	1.2162		5
10	27.0000	30.0000	28.5000	3.0000	9.4975	1.6518e-17	1.6518e-17	4.9555e-14	1.1601		5
	•		m			1					,

- Adjust screen settings and click "Apply" to see how changes affect atmospheric parameters
- The above table shows one possible solution to achieve the r0's for continuous integration using 10 screens (move first screen to 0.5 km and decrease thickness slightly)
 - O Spherical r0 for Platform 0.0688 m (compared to 0.0686)
 - O Spherical r0 for Target 0.5127 m (compared to 0.5128)

- Many different ways to change the settings to get similar results
- May need to also monitor other atmospheric parameters
- Ultimately it is up to the user to determine when the settings are "good enough" based on what the requirements are or what is needed from the simulations

Mesh Parameters

Tools Help		
	×10 ⁻¹⁸ Turbuler	ice Profile
	15	c ²]
		~1
Engagement Geometr	У т 10-	_
{ 10	<u></u> * \$]	3
5	5	1
D	4	
i o 🌪 🗧		
0 5 10 15 20	25 0 10	20 30
Ground Range (kilometer	rs) Slant Coordina	ate (kilometers)
General Geometry Atm	osphere Screens Mesh	Simulation
Propagation Type Tur	rb Blurring Factor 3 Wavelength	(microns) 1.030
Propagation Type Tur Plane Wave # Pts in F Spherical Wave	b Blurring Factor <u>3</u> Wavelength Platform Aperture <u>10</u> Platform	(microns) 1.030 Diam (m) 0.5
Propagation Type Tur Plane Wave Spherical Wave # Pts in F # Pts in # Pts in	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform 1 Target Aperture 10 Target	(microns) <u>1.030</u> Diam (m) <u>0.5</u> Diam (m) <u>0.1</u>
Propagation Type Tur Plane Wave Spherical Wave #Pts in F #Pts in	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform 1 Target Aperture 10 Target Slant F	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000
Propagation Type Tur Plane Wave Spherical Wave #Pts in # #Pts in	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform I Target Aperture 10 Target Slant F	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000
Propagation Type Tur Plane Wave Spherical Wave # Pts in F # Pts in # Pts in Li	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform I Target Aperture 10 Target Slant F ock Value Calculated Mesh	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters
Propagation Type Tur Plane Wave Pts in F Spherical Wave #Pts in Selected Mesh Luproprxy 512	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform I Target Aperture 10 Target Slant F ock Value Mesh Size (m)	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters num Nxy 261
Propagation Type Tur Plane Wave Pts in F Spherical Wave # Pts in F # Pts in F Selected Mesh Lu propnxy 512 propdxy at Platform (m) 0.00663	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform In Target Aperture 10 Target Slant F ock Value Calculated Mesh Mesh Size (m) Maximum dxy Plat	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters num Nxy 261 form (m) 0.01
Propagation Type Tur Plane Wave Pts in F Spherical Wave # Pts in F # Pts in Selected Mesh Lu propnxy 512 propdxy at Platform (m) 0.00663 propdxy at Target (m) 0.00663	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform In Target Aperture 10 Target Slant F ock Value Calculated Mesh Mesh Size (m) Maximum dxy Plat Nominal dxy Ta	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters num Nxy 261 form (m) 0.01 arget (m) 0.01
Propagation Type Tur Plane Wave Pts in F Spherical Wave # Pts in F # Pts in	rb Blurring Factor 3 Wavelength Platform Aperture 10 Platform In Target Aperture 10 Target Slant F ock Value Calculated Mesh Minin 3.394 Maximum dxy Plat Nominal dxy Ta	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters num Nxy 261 form (m) 0.01 arget (m) 0.01
Propagation Type ● Plane Wave ● Spherical Wave # Pts in F # Pts in # Pts in F # Pts in F # Pts in # Pts i	b Blurring Factor 3 Wavelength Platform Aperture 10 Platform n Target Aperture 10 Target slant F Slant F Slant F ock Value Mesh Size (m) Maximum dxy Plat 3.394 3.394 Nominal dxy Tat IPW Rytov[Sph Rytov] f_ (Hz) f_ (Hz)	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters num Nxy 261 form (m) 0.01 arget (m) 0.01
Propagation Type ● Plane Wave ● Spherical Wave # Pts in F # Pts in # Pts in F # Pts in 0.00663 propnxy 512 propdxy at Platform (m) 0.00663 propdxy at Target (m) 0.00663 PVV r_n (m) Sph r_n (m) e_n (µrad) atform 0.0651 0.0688 5.3703	b Blurring Factor 3 Wavelength Platform Aperture 10 Platform n Target Aperture 10 Target slant F Slant F Slant F ock Value Mesh Size (m) Maximum dxy Plat 3.394 3.394 Nominal dxy Ta PW Rytov Sph Rytov f _c (Hz) f ₋ (Hz) 0.1262 0.0862 155.7950	(microns) 1.030 Diam (m) 0.5 Diam (m) 0.1 Range (m) 30000 Parameters 1000 num Nxy 261 form (m) 0.01 arget (m) 0.01

- Mesh tab contains calculations for setting propagation mesh parameters for input to a waveoptics model.
- Can compute parameters for either plane wave or spherical wave propagation
- Computes a minimum grid size and maximum pixel spacing and recommends values to be used
- Can modify the turbulence blurring factor or specify minimum number of points in the aperture as needed
- For the example, mesh size (propdxy) is limited by the minimum number of points in aperture

Example Mesh

From previous slide the minimum Nxy is 261, and gets rounded up to 512 (the next power of 2)

Changing the turbulence blurring factor to 2 will yield more optimistic mesh settings (smaller grid)

Simulation Setup

e <u>T</u> ool	s Help							
	Ň.	4	E			× 10 ⁻¹⁵	Turbul	
LT, km aboveMSL 5 5 01	Eng.	agement G	eometr	у т	c ² (m ⁻²³)	10 - 5 -		
a •) 5	10 15	20	25		0	10	20 30
	Groun	d Range (k	ilomete	rs)			Slant Coordi	inate (kilometers)
Gen	eral G	eometry	Atm	osphere	Scre	ens]	Mesh	Simulation
Propa Las Fo	gation Directio Laser Typ er Power (KV cus Range (r Time Ster	on Platform be UNIFOF V) n) 3 Focus 30	m to T RM 10 100000 at targe	t v	state			
	nrono	V 256		Steady-e	state			
	propdxy (r	n) 0.0095	9					
V #	opply Therma	l Blooming nce		Run]	,		
	PWr _n (m) Sp	ohr <mark>n</mark> (m) θ	(µrad)	PW Ryto	Sph Ryt	ov f _g (Hz)	f _T (Hz)	Terret Trace Terret
Platform	0.0651 0.	0688 5.	3703	0.1262	0.0862	155.7950	30.6293	0.6776 0.9484 0.6427
- Martin Carl								

- PropConfig has a built-in simulation capability based on TBWaveCalc in ATMTools.
 - Open-loop simulation that can include both turbulence and thermal blooming

• Options include

- **O** Propagation direction
 - Currently only propagates from an aperture
- O Laser type
- Laser power (important for thermal blooming)
- Focus range of the transmitting optics
- **O** Number of time steps
- Mesh can be changed independently of settings on Mesh tab.

Example Simulation

Change Time Steps to 10 and run simulation

Once simulation completes, right+clicking on the y-axis label will allow the user additional options for displaying the data

A slider bar below the image (not visible in picture at right) allows the user to display irradiance at different time steps

- Output the Atm and G structures for use with other functions in ATMTools, EngagementTools, and SHaRE (via the Tools menu)
- Save data to a Matlab .mat file and load data files previously saved with PropConfig (via the File menu)
 - Saved data file contains Atm and G structures for use with other functions in ATMTools and EngagementTools and other data necessary for populating PropConfig (wavelength, diameters, etc)
 - The utility keeps track of recent files/directories
 - **O** PropConfig can also load data files previously saved with TurbTool
 - Data can then be loaded into a WaveTrain runset for doing wave optics simulation or loaded into Matlab to set up an engagement in SHaRE (Scaling for High Energy Laser and Relay Engagement)
- Refer to the ATMTools and EngagementTools user's guides for more information

Save to File

е	Tools	Help (-					DAPA 1		
			Enter a nan	ne for th	e paramete	ers file				?
			Sav	e in: [🚞	MATLAB			• +	- 🗈 📸 -	
	Gen Gen	P 0 2 eral	My Recen Document Desktop My Docume	nts	ropconfig.mai ropconfig_2.r estAtmStruct	t nat .mat				
		Diamet		-		14				*
		Diam	My Networ	k Filer	ame:	propconfig	_2.mat		•	Save
		Γ	Flaces	Save	as type:	MAT-files (*.mat)		•	Cancel
				Begin tu	ırbat SR (m)	0		1		
				End tu	ırbat SR (m)	10439.69	95			
				Maximur	n altitude (m)	Inf				
				Ground	Altitude (m)	0		Use Terrain Data	a	
			То	p of bound	ary layer (m)	5000				
										i di seconda
		PW r _o (n	n) Sph r _a (m)	θ _g (µrad)	PW Rytov	Sph Rytov	f _g (Hz)	f _T (Hz)	τττ	Γ
าส	tform	PW r _o (m	1) Sph r _o (m) 0.2694	θ _α (µrad) 1.3939	PW Rytov 1.1977	Sph Rytov 0.1061	f _g (Hz) 199.8682	f _T (Hz) 29.6022	T _{scal} T _{at}	x ^T iel 21 0.6890

Save the PropConfig data to a Matlab .mat file using File->Save...

• List of variables in a PropConfig data file:

ATMToolsVer	1x1	struct	Trans_Abs	1x1	double
ApDiamPlatform	1x1	double	Trans_Scat	1x1	double
ApDiamTarget	1x1	double	Wavelength	1x1	double
Atm	1x1	struct	computedScreenData	1x1	struct
FFTbase	1x1	double	meshParamsPW	1x1	struct
G	1x1	struct	meshParamsSPH	1x1	struct
GeomSpec	1x2	char	propdxy	1x1	double
GndAlt	1x1	double	propdxy2	1x1	double
HELFocus	1x1	double	propnxy	1x1	double
HELPower	1x1	double	screens	1x1	struct
PlatformPropMetrics	1x1	struct	targZenithProjection	1x2	double
S	1x1	struct	targZenithTP	1x2	double
SimResults	0x0	double	targZenithXY	1x2	double
SimStatus	1x1	cell			
TargetPropMetrics	1x1	struct			

computedScreenData

computedScreenData =

- platformAlt: 2755
 - targetAlt: 1231
- groundRange: 1.9936e+004
 - slantRange: 2.0000e+004
- platformVp: 50
- platformVt: 0
 - targetVp: 2.2204e-016
 - targetVt: 0
- psPositions: [20x1 double]
- psThicknesses: [20x1 double]
 - Cn2: [20x1 double]
- IntegratedCn2: [20x1 double]
 - Abs: [20x1 double]
 - Scat: [20x1 double]
 - Temp: [20x1 double]
 - Lin: [20x1 double]
 - Lout: [20x1 double]
- r0Screens: [20x1 double]
- wavelength4r0s: 1.3150e-006

- WindVelocityP: [20x1 double]
- WindVelocityT: [20x1 double]
 - EffVelocityP: [20x1 double]
 - EffVelocityT: [20x1 double]
 - platformVy: 50
 - platformVx: 0
 - targetVy: 2.2204e-016
 - targetVx: 0
- WindVelocityY: [20x1 double]
- WindVelocityX: [20x1 double]
 - EffVelocityY: [20x1 double]
 - EffVelocityX: [20x1 double]

Pulling Data into WaveTrain

- With WaveTrain 2010A, there are two options for populating a run with data from PropConfig:
 - 1) Load the computedScreenData structure and any other parameters needed using mliLoad. Use mliGetField to pull the required information from the data structure. Use your favorite AcsAtmSpec constructor.
 - This option is available in WaveTrain 2009A as well
 - 2) Call PropConfigAtmSpec, instead of AcsAtmSpec, and/or PropConfigTBAtmSpec, instead of MtbAtmSpec, with the Matlab data file name to construct the AcsAtmSpec object
 - Can still use mliLoad to load any additional parameters that may be needed
 - The object created by PropConfigAtmSpec has methods for returning propnxy, propdxy, HEL focus range and HEL power as specified in the PropConfig data file

PropConfigAtmSpec

- Requires Matlab file name, optional inputs for turbulence multiplier, including slew wind and scaling for atmospheric transmission
- There is a constructor for AcsAtmSpec that uses an ATKAtmStruct
 - **O** However, it only pulls out turbulence and screen locations/thicknesses
 - This new constructor can get everything needed, i.e. turbulence, wind (natural and optionally slew), inner and outer scale, wavelength and screen information
- The TurbTool data file constructor for AcsAtmSpec still exists

float HELFocus() { return HELFocus; }

PropConfigTBAtmSpec

```
PropConfigTBAtmSpec(const char* matFileName,
                    bool useGeometryForSlewWind=true,
                    float xvs=0,
                    float yvs=0,
                    float xvt=0,
                    float yvt=0,
                    int numberSavedStates=1);
PropConfigTBAtmSpec(const char* matFileName,
                    int nxy,
                    float dxy,
                    float xmin,
                    float ymin,
                    float dtime,
                    bool useGeometryForSlewWind=true,
                    float xvs=0,
                    float yvs=0,
                    float xvt=0,
                    float vvt=0,
                    int numberSavedStates=1);
```

 MtbAtmSpec does not have a constructor that uses ATKAtmStruct, so this new constructor simplifies things a bit

 Also has the option to include slew wind

Example System

Example Runset

						KUN VALIADI	es	
	Туре		Name		Value			D
1	int		id×		\$loop(1)			
F							1	
В	PropConfigAtm	Spec	atmSpec		PropConfigAtmSpec("pro	pconfig.mat")		
ŧ	PropConfigTBA	tmSpec	tbSpec		PropConfigTBAtmSpec(")	propconfig.mat")		
Ē				_		•		
6	int		nxy		atmSpec.nxy()			
7	float		dxy		atmSpec.dxy()			
8	float		lambda		atmSpec.lambda()			
9	float		pathLeng	th	atmSpec.pathLength()			
10	float		HELFocus		atmSpec.HELFocus()			
11	float		HELPowe	r	atmSpec.HELPower()			
	1				'			
Þ	•					C	- 4	
	Tupo	Name		U -li		System Param	eters	Dece
	AccolorSeco			a kee C				Desc
1		ausopeu		auno Hecel	pec			specifi
4	можторес	mcospec		tospe				specin
3		propnxy		пху				
4	rioat	propaxy		аху				<u></u>
5	rioat	L		pathl	Length			Slant r
6	float	power		HELP	ower			Power
7	float	focusRar	ige	HELF	ocus			
8	float	aperture	Radius	0.1				
9	float	sigma		5.676	e-2			
10	float	waveleng	jth	lambo	da			
11	int	seed		idx+:	2			Seed f
12	12 bool TBon		true				Turn t	

- PropConfigAtmSpec and PropConfigTBAtmSpec are classes derived from AcsAtmSpec and MtbAtmSpec
- They can be used in any existing atmospheric path module

Applying Turbulence Factor

© 1	RE: PropCo	nfig (for	C:\Docu	men	ts and Settings\mgualtieri\My Documents\Mo	dels\TestAtmStru	
File	Edit View	Build Too	ls Option	is W	indow Help		
	🗲 🖬 🐰 🖻	- 2 +	- +	+ 8	🍃 ! 🕅 🤣 🛅 (1) 🔍 💯 Stop Time: 0.001		
					Run Variables		
	Туре		Name		Value	Description	
1	int		idx		\$loop(10)		
Z							
3	PropConfigAtmSpec atn		atmSpec	<pre>propConfigAtmSpec("propconfig.mat")</pre>			
┖┿╸	PropConfigTD	kunopec	tbSpec	PropConfigTBAtmSpec("propconfig.mat")			
5							
6	int		nxy		atmSpec.nxy()		
7	float		d×y		atmSpec.dxy()		
8	float lam		lambda		atmSpec.lambda()		
9	float p		pathLeng	th atmSpec.pathLength()			
10	float HELF		HELFocus	s atmSpec.HELFocus()			
11	float	HELPowe		r	atmSpec.HELPower()		
Ť					System Parameters		
	Турс	Name		Vale	0	Bescription	
1	AcsAtmSpec	acsSpec		atmS	pec.applyCn2Factor(idx+1) sp	pecifies al <mark>l</mark> the propert	
2	MtbAtmSpee	mtbSpoo		tbSpe	ər	ecifies thermal bloomi	
3	int	propnxy		nxy			
4	float	propdxy	opdxy dxy				
5	float	L	. pathL		ength SI	Slant range	
6	float	power	iower HELP		ower Pr	ower in the clipped be	
7	float	focusRar	ocusRange HELF		ocus		
8	float	aperture	apertureRadius 0.1				
9	float	sigma	sigma 5.676		-2		
10	float	wavelen	wavelength lambo		la		
11	int	seed	seed 2		S	eed for TBAtmoPath s	
12	bool	TBon	fBon true		Т	urn the targetboard or	

- Create an original
 AtmSpec object
- Apply a turbulence factor
 - Makes a copy of the original AtmSpec object with a modified turbulence strength

- Successfully created versions of the runset BLAT01RunAtoG using data from PropConfig with v2010A-beta in mzadist
 - One version loads the computedScreenData structure and sets parameters and variables using mliGetField and uses AcsAtmSpec to set up the atmosphere
 - **O** Another version uses PropConfigAtmSpec
- Verified that results of the three runs were the same
 - Once I found that the screens were being placed at beginning of segments, as opposed to mid-segment as is done in ATMTools

